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 Acoustic Radiation From Rotating Blades- 
The Kirchhoff Method in Aeroacoustics

 

F. Farassat

 

NASA Langley Research Center, Hampton, Virginia

 

Abstract

 

This paper reviews the current status of discrete frequency noise prediction 
for rotating blade machinery in the time domain. There are two major 
approaches both of which can be classified as the Kirchhoff method. These 
methods depend on the solution of two linear wave equations called the K 
and FW-H equations. The solutions of these equations for subsonic and 
supersonic surfaces are discussed and some important results of the research 
in the past years are presented. This paper is analytical in nature and empha-
sizes the work of the author and coworkers at NASA Langley Research Cen-
ter.      
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1.0  Introduction

 

Having obtained a Ph.D. from Cornell University in 1973 under the supervi-
sion of Professor William R. Sears, I started to work at NASA Langley 
Research Center as a visiting scientist of The George Washington University 
Joint Institute. My task at Langley was to work on the prediction of the noise 
of helicopter rotors and propellers. We had a good experimental group of 
engineers collecting helicopter rotor and propeller noise data. However, the 
capability to predict the noise of these rotating machinery in the design stage 
to meet community and military noise standards was lacking. By the early 
Seventies, noise generation mechanisms of helicopter rotors and propellers 
were understood fairly well. Mainframe computer technology was develop-
ing fast. Computer memory size and speed were increasing by leaps and 
bounds. At that time, propeller noise prediction used Gutin’s formula [1] 
which was of 1930’s vintage. Helicopter noise prediction was more advanced 
and was based on Lowson’s formula [2]. Lowson and coworkers had devel-
oped helicopter noise prediction codes based on his theory. He had shown the 
consistency of his result with that of Gutin. Both these formulas are for rotat-
ing compact dipoles predicting the loading noise only. Thickness noise pre-
diction was ignored because there was a feeling among acousticians that it 
was not important for propellers and helicopter rotors. This was contrary to 
the conclusion of Ernsthausen in Germany [3] and Deming in the U.S. [4] in 
the Thirties who investigated thickness noise. In fact, Deming had derived a 
thickness noise formula following the analytic procedure of Gutin but based 
on Rayleigh’s piston in the wall analysis. He also presented numerical results 
supporting experimental data on the importance of thickness noise at high 
blade tip speeds.

In the early Seventies, most noise prediction methods were in the frequency 
domain. This was the natural approach for the researchers because time 
domain methods generally require powerful computers. By suitable approxi-
mation and ingenuity, closed form solutions were obtained for some signifi-
cant problems using the frequency domain analysis. Aeroacoustics was an 
active research area and many experimental and theoretical works were being 
published then. Lighthill’s theory was extended to flows in the presence of 
moving surfaces by Ffowcs Williams and Hawkings in a paper in the Philo-
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sophical Transactions [5]. I had struggled to understand this highly abstract 
paper and to use it in my Ph.D. thesis. My results were not suitable for imme-
diate application in noise prediction. As I was searching for a direction of 
research, I was wondering why time domain methods were not used exten-
sively in aeroacoustics. It was in the Summer of 1973 that I met Phil Doak at 
Langley who was visiting us. I was impressed by his informality and friendli-
ness. I asked him about the lack of interest in the time domain method in 
aeroacoustics. His response still rings in my ears: “force of tradition”! He 
then told me that I should ignore the tradition and explore the time domain 
method for rotating blade noise prediction. It has been an exciting journey 
and I owe it all to Phil. It is with great pleasure and honor that I dedicate this 
paper to Phil on the occasion of his eightieth birthday. 

Phil’s advice could not have been given at a more auspicious time. In addition 
to the availability of powerful computers, there were also other new tools 
becoming available to help in advancement of the time domain method. 
Computational fluid dynamics and more versatile measuring instruments are 
two of these new tools. One which is perhaps overlooked, and in my opinion 
the most important, is the analytic tool. The progress since the Fifties in solv-
ing partial differential equations, particularly the use of the theory of distribu-
tions or generalized functions [6-8], made it possible to get closed form 
solution of the wave equation with sources on a moving surface in various 
forms suitable for noise prediction. Ffowcs Williams and Hawkings had used 
generalized function theory in their paper [5]. The power of this theory is 
such that much of what was known before such as the Kirchhoff formula for 
radiation [9], the Lowson’s and Curle’s formulas [2, 10], can be derived eas-
ily and extended. Other questions such as the importance of shock waves in 
noise generation can naturally be answered using this theory. However, the 
areas of mathematics applicable in aeroacoustics of moving bodies which 
also include general tensor analysis and differential geometry are not part of 
the curriculum of graduate level engineering. Goldstein has used basic gener-
alized function theory to derive some of the important results of aeroacous-
tics [11]. The present author has published two reports which cover the 
details of the mathematics used for the wave equation with sources on a mov-
ing surface [12-13]. These reports together with Goldstein’s book are recom-
mended to the readers to follow the analytic steps below.

In this paper, we review the Kirchhoff method in aeroacoustics using the time 
domain method. We will emphasize the mathematical aspects of the method. 
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Our purpose is to gather the results scattered in numerous technical papers of 
the author and the coworkers in one place to help those entering the field and 
the other acousticians interested in rotating blade noise. Recently, it has been 
possible to predict the quadrupole noise of helicopter rotors in reasonable 
time on a desktop workstation. The results of some research on high speed 
impulsive rotor noise are reviewed. We give in detail the derivation of the for-
mulation used to calculate the noise from sources on an open surface (a 
panel) moving supersonically. The Ffowcs Williams and Hawkings approach 
[5] can be classified as a Kirchhoff method. In fact, these authors call one of 
their result as the extension of the Kirchhoff formula to a moving surface. We 
begin with two linear wave equations called the Kirchhoff (K) and the Ffowcs 
Williams-Hawkings (FW-H) equations. The solution of the K equation gives 
the Kirchhoff formula for moving surfaces. We mention the relation of the K 
equation to the Ffowcs Williams-Hawkings (FW-H) equation in a remark that 
follows. We then discuss how we obtain the solution of several wave equa-
tions with various kinds of inhomogeneous source terms appearing in the 
governing equations. We address the subsonic and supersonic cases sepa-
rately because they require different treatment. 

The organization of the paper is as follows. In the next section we present the 
governing equations of the Kirchhoff method. Here we give two equations 
called the K and the FW-H equations. We recognize four inhomogeneous 
source terms in these equations. In Section 3, we briefly indicate how the 
solutions to the wave equations with these source terms can be obtained. We 
review some of the recent results of quadrupole noise prediction of rotors. A 
new method to derive a formula suitable for prediction of the noise from a 
supersonic panel will be presented here. Concluding remarks follow in Sec-
tion 4.

 

2.0  The Governing Equations (K and FW-H)

 

The classical Kirchhoff formula [9] describes the solution of the wave equa-
tion in the exterior of a surface  as a surface integral over  whose inte-
grand depends on the values of the unknown function, its normal and time 
derivatives on . It was originally obtained by selecting one of the two func-
tions in the Green’s identity in four dimensions [11] as the fundamental solu-
tion of the wave equation. The same result can be obtained by an elegant 
method which requires a more abstract reasoning. Extend the unknown func-

S S

S
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tion, say the acoustic pressure, to the interior of the surface by assuming that 
its value is zero there. Now apply the wave operator to this discontinuous 
function treating all the derivatives as generalized derivatives [6-8, 12, 13]. 
There will now be inhomogeneous source terms on the right of the wave 
equation which involve the Dirac delta function with its support on the sur-
face . This inhomogeneous wave equation is what we call the 

 

K equation

 

. 
Using the Green’s function of the wave equation in the unbounded space to 
formally solve the K equation will give the 

 

Kirchhoff formula

 

. One is not 
restricted to a stationary data surface in this approach. This is precisely the 
method that Farassat and Myers used to derive the Kirchhoff formula for a 
moving surface [13, 14]. The same idea of extending all fluid parameters to 
the interior of the surface  was utilized by Ffowcs Williams and Hawkings 
to get the FW-H equation. They used the mass and momentum conservation 
laws treating all the derivatives as generalized derivatives and manipulated 
these two equations as Lighthill did to obtain a wave equation [5, 8, 11, 12]. 
Note that in deriving the K equation, we assume that the unknown function 
satisfies the linear wave equation everywhere while the FW-H equation uti-
lizes the conservation laws. This explains the difference in behavior of the 
solutions of these equations in the near field. See item 1 of the remarks below.

Let the moving surface be described by  such that  outside 

the surface and  on the surface. Let  be the acoustic pressure. 
Then the K equation is [12-14]:

 

(EQ 1)

 

where 

,

 

(EQ 2)

 

 are the normal and time derivatives of , respectively,  is 

the local normal Mach number of the surface, 

 

c

 

 is the speed of sound and 
 is the unit outward pointing normal to the surface. The solution of 

the K equation is 

 

the Kirchhoff formula for the moving surface

 

  [12-
14].

S

S

f x t,( ) 0= f 0>
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1
c
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1
c
---  
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∂

Mn p ′δ f( )[ ]–   ∇ p ′nδ f( )[ ]⋅–=
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=
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Next let  be a surface which allows the fluid to flow through, assuming 

again that  outside the surface and  on the surface. The FW-H 
equation is [5, 8, 12, 15]:

 

(EQ 3)

 

where  is , 

 

ρ 

 

is the density, and 

 

ρ

 

0 

 

and 

 

c 

 

are the density and 

speed of sound of undisturbed medium. The local normal fluid and surface 
velocities are denoted by 

 

u

 

n

 

 

 

and 

 

v

 

n

 

, respectively. The Lighthill stress tensor is 

denoted 

 

T

 

ij

 

 

 

and p is the surface pressure on 

 

f = 

 

0

 

.

 

 Note the above description 

of the surface 

 

f 

 

implies that  where 

 

n

 

 is the unit outward normal to 
this surface. The Heaviside function is denoted 

 

H 

 

(

 

f

 

). The bar over the partial 
differentiation denotes generalized differentiation [6-8, 12]. This notation is 
used in this paper only when there is the possibility of confusion with ordi-
nary differentiation. We have followed the tradition of using the notation  
in Eq. (3) which is defined as follows:

 

(EQ 4)

 

 

 

Also note that 

 

p on the right of Eq. (3) is the gage pressure . It was 

Ffowcs Williams who proposed that a penetrable moving surface f = 0 could 
be more suitable for noise prediction [15, Chap. 11, Sec. 10]. Recent applica-
tions have proven him right.

It is evident that we have essentially four types of inhomogeneous source 
terms in the K and FW-H equations. Later in this paper, for supersonic 
sources, we will treat other source types. We need to give the solution for the 
following four types of wave equations:

f 0=

f 0> f∇ 1=

p ′2

t∂
∂ ρun ρ ρ0–( )vn–[ ]δ f( ){ }=

xi∂
∂ ρ un vn–( )ui pni+[ ]δ f( ){ }–

∂
2

∂xi∂x j

----------------- TijH f( )[ ]+

p ′ ρ ρ0–( )c
2

f∇ n=

p ′

p ′
p ′    outside   f 0=

0    inside   f 0=



=

p p
0

–
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, (EQ 5)

, (EQ 6)

, (EQ 7)

. (EQ 8)

This approach has several advantages. First the solution of each of these 
equations are basically different. Second, by seeking exact closed form solu-
tions of these equations, one is able to evaluate various kinds of common 
approximations, e.g., mean surface approximation of blade loads, used in 
practical problems. It has been our policy at Langley to derive exact solutions 
to these equations suitable for development of robust and efficient noise pre-
diction codes. We have always required that no approximations to the blade 
geometry and kinematics be made in the derivation of the main formulations. 
Various choices of approximations are made later starting from these results.

Because of the presence of the Dirac delta function in Eqs. (6-8), it is obvious 
that the sources on the right of these equations are surface sources. The 
nature of the source in Eq. (5) requires some explanation. From one point of 
view, it can be treated as a volume source while from another as a combina-
tion of volume and surface sources. We will elaborate further on this matter 
in the next section. 

By the Kirchhoff method we mean any method based on the solutions of the 
K or FW-H equations. As seen above, the two equations are closely related in 
their derivation and solution. We will call the surface  the data sur-
face.

Remarks- 1. For many years, the FW-H equation was used in applications 
assuming that the data surface  coincided with the blade surface, i.e., 
an impenetrable surface. Ffowcs Williams himself had suggested that a pene-
trable surface, as we have assumed here, may be more suitable for noise pre-
diction [15] by including the significant part of the quadrupole sources inside 

p ′2 ∂
2

∂xi∂x j
----------------- TijH f( )[ ]=

p ′2 Q1 x t,( )δ f( )=

p ′2
t∂

∂ Q2δ f( )[ ]=

p ′2 ∇ Q3δ f( )[ ]⋅=

f 0=

f 0=
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the surface in calculations. Di Francescantonio in Italy [16] and indepen-
dently Brentner and Farassat in the U.S. [17] implemented the suggestion of 
Ffowcs Williams. Di Francescantonio showed the equivalence of this method 
to that based on the Kirchhoff formula for a moving surface of Farassat and 
Myers [14] in the far field. Brentner and Farassat showed that the method 
based on the FW-H equation with penetrable data surface is superior to that 
based on the Kirchhoff formula in the near field while the computational 
efforts were comparable when the quadrupole sources outside the surface 

 were neglected. This produced a flurry of activities by aeroacousti-
cians around the world to convert their Kirchhoff codes based on the K equa-
tion to that based on the FW-H equation. In fact, there does not seem to be 
any incentive to use the Kirchhoff formula for moving surfaces in rotating 
blade noise prediction because it requires that the data surface be in the linear 
region where the CFD accuracy is in question. However, the Kirchhoff for-
mula for a moving surface is of interest in other fields such as in the electro-
magnetic radiation problem [9].

2. Brentner and Farassat [17] have shown that the inhomogeneous source 
term on the right of the FW-H equation can be written as follows:

,

i.e., as the sum of the source terms on the right of the K equation,  and 

terms involving products of the first order parameters of the flow. The latter 
terms are negligible compared to the source on the right of the K equation in 
the linear region. This explains the difference in behavior of the solutions of 
the two equations in the near field. 

3. The solution of the K and FW-H equations is fairly simple for subsonic 
surfaces. If part or all the surface  travels at supersonic speed, obtain-
ing a useful solution for computation is notoriously difficult. There are math-
ematical singularities in the solution that are not physical. There is 
cancellation of singularities among the solution of Eqs. (5-8). There is forma-
tion of shock-like structures and appearance of caustics in the acoustic field. 
We have spent much effort to derive solutions valid for supersonic surface 
noise prediction and to understand the structure of the radiation field.

f 0=

QK
∂

2

∂xi∂x j
---------------- TijH f( )[ ] ....- 

∂
∂t
----- ρunδ f( )[ ]+ +

QK

f 0=
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4. There seems to be endless varieties of solutions of the K and FW-H equa-
tions. One reason given in deriving a new solution appears to be that the 
available solutions are time consuming on a computer. In general, authors 
rarely state the computation time in research papers. It is so much a function 
of the algorithms used in the code and how experienced the researchers are in 
efficient code development. Moreover, computation time is computer depen-
dent and computer technology is advancing at a very fast pace. At present 
there does not appear to be a need for deriving yet another solution to these 
equations for subsonic surfaces. 

5. Because of the simplicity of the Green’s function of the wave equation in 
the frame fixed to the undisturbed medium, it is better to always start in this 
frame for obtaining a solution even for the observer in motion. Generally, the 
known solutions in the moving frame are valid for uniform rectilinear motion 
and, thus, do not apply to an accelerating or maneuvering aircraft and some-
what restricted in the scope of application. This comment applies to open 
rotors and propellers. For ducted fan problems, often the frame of choice is 
one that is fixed to the duct.

3.0  The Solution of the Governing Wave Equations

We will now describe how Eqs. (5-8) are solved. We refer the readers to the 
appropriate papers for the details. It is not possible to give all the relevant 
details here because the algebraic manipulations are somewhat extensive. 

3.1  The Quadrupole Noise 

The quadrupole noise is governed by Eq. (5). This term only appears in the 
FW-H equation. Ideally, we would like to locate the data surface where the 
contribution of the quadrupoles outside the surface to the noise is small. At 
present in some important problems, such as in high speed helicopter rotor 
noise prediction, this does not seem possible because the accuracy of the 
CFD data is not satisfactory where the data surface must be positioned. The 
alternative technique is taking the blade surface as the data surface and add-
ing the contribution of the quadrupoles in the regions where they have large 
source strength, to the surface noise. This requires a suitable solution of Eq. 
(5) as well as a good approximation method based on the physics of the prob-
lem. We will first present some exact results. 
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Let  and  be the observer and the source space-time variables. For 

, the surface  defines a sphere with center at 

the observer and the radius  for all . Here c is the speed of sound 

in the undisturbed medium. Let  be the element of the surface area of this 

sphere and define . Then the solu-

tion of Eq. (5) is

(EQ 9)

One can visualize the above integral dynamically. In what follows, we 
assume that  is kept fixed in the discussion. The surface  is called the 
collapsing sphere because, this surface represents a sphere with center at x 
whose radius collapses at speed of sound. Figure 1 shows the collapsing 
sphere in the process of intersecting a rotor blade. The surface  is gen-
erated by the intersection of the collapsing sphere and the data surface 

 for . This surface can be determined for a fixed  in advance 
and is independent of the source time. The inner surface integral in Eq. (9) 
sums the contribution of all the quadrupoles outside the surface  over 

the sphere  at the source time . As  varies, the radius of  changes and 
therefore this surface integral is source time dependent. The result of the sur-
face integral is, therefore, a function of . The outer integral sums this 
function over the source time with the denominator of the integrand account-
ing for the spherical spreading of the radiated sound.

The above integral treats all the quadrupoles as volume sources. It is an exact 
result and is valid even when shock waves, wakes and other discontinuities 
are present in the flow. In practical problems, the integral on the right side of 
Eq. (9) is evaluated numerically and one is therefore obliged to use numerical 
differentiation with respect to the observer variables– a procedure that is sub-
ject to numerical errors in addition to being time consuming on a computer. 
Farassat and Brentner have converted the above double differentiation with 
respect to the space variables to derivatives with respect to observer time 
variable [18]. The conversion can be performed exactly. The procedure is 
similar to derivation of Formulation 1 in Subsection 3.3.1. This result was 
used by Brentner and Holland [19] and Farassat and Brentner [20] to derive 
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c t τ–( ) τ t≤
dΩ

F y  x t,;( ) f y τ,( )[ ] ret f y t r c⁄–,( )≡=
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two analytic approximations to Eq. (9) called Formulations Q1A and Q2, 
respectively, for prediction of high speed impulsive noise of helicopter rotors. 

Both these formulations approximate the surface  by a portion of a cylinder 
with axis passing through the observer and perpendicular to rotor plane. The 
observer is assumed to be in the far field and in the rotor plane where the peak 
directivity of high speed impulsive noise lies. The quadrupole sources are 
integrated along lines perpendicular to the rotor plane and treated as new sur-
face sources on this plane. Although this approximation is strictly valid for 
the observer in the far field and in the rotor plane, tests have shown that it is 
also good for the observer out of the rotor plane. Two different analytic tech-
niques were used to get the two formulations. Formulation Q1A is valid for 
subsonic sources because of the appearance of the Doppler factor in the 
denominator of its integrand. Formulation Q2 is valid for both subsonic and 
supersonic sources and is remarkably simple. The use of the above approxi-
mation yields a substantial reduction in quadrupole source strength storage 
space and computation time. In fact, it can be said that quadrupole noise pre-
diction has now come within the reach of helicopter rotor designers.   

We summarize the most important conclusions of the research on high speed 
rotor noise prediction at Langley from the numerical studies based on the 
above two formulations [19,20]:

1. Formulation Q1A produces a more robust code than Formulation Q2 
because the former has time derivatives while the latter has directional deriv-
atives of the surface sources. Because of high source gradients at the leading 
edge of the blades and across shock traces, Formulation Q2 is prone to 
numerical errors.

2. Shock surfaces and the region near the leading edge of the blades contrib-
ute significantly to the high speed rotor noise. We explain in the next Subsec-
tion how shock surfaces that have no volume can actually contribute to the 
quadrupole noise.

3. In case of delocalization [21] where the shocks on the blades can extend 
far beyond the blade tips, one should also include the source region beyond 
the tips in noise prediction. However, the sources over the blades and beyond 
the tips behave differently in shaping the acoustic waveform. The sources 
around and in the vicinity of the blades account for the peak level of the 

Ω
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waveform but the sources beyond the tip account for the steepening and 
broadening of the waveform which can often be significant.

3.2  Is the Quadrupole Source Term in Eq. (5) a Volume Source?

The inhomogeneous source term of Eq. (5) bears much resemblance to that in 
Lighthill’s jet noise equation. If we study the derivation of FW-H equation 
carefully, we recognize that we have explicitly exhibited only the discontinu-
ity of fluid parameters across the surface . There may be other discon-
tinuities within the fluid such as shock surfaces, thin wakes and vortices. We 
can explicitly exhibit the sources due to these discontinuities by using just the 
concept of generalized differentiation [6, 7, 8, 12, 13]. Farassat, Brentner and 
Myers [18, 22, 23] have carried out this procedure in detail. To illustrate the 
method we will only consider the discontinuity across a shock wave in the 
flow and show how easily we can identify the sources on the shocks and their 
strengths. 

Let the shock surface be defined again by . We consider the quadru-
pole source term of Lighthill 

    (EQ 10)

The derivatives here are generalized derivatives as indicated in this equation 
by a bar over the derivative sign. Understanding and acceptance of this state-
ment requires much thinking and mathematical maturity. It follows from the 
fact that conservation laws and all the steps in deriving the FW-H equation 
are set in the space of generalized functions. Thus discontinuous functions 
are naturally allowed in the solution of differential equations but all deriva-
tives are generalized derivatives. To avoid confusion with the notation of 
ordinary derivatives, we use a bar over the derivative sign whenever there is 
the danger of confusion. We have eliminated the Heaviside function of the 
source term of Eq. (5) to illustrate the main idea and to simplify algebraic 
manipulations. The rule of generalized differentiation gives us in two steps 
the following:

f 0=

f 0=

Q
∂

2
Tij

∂xi∂x j

----------------=
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(EQ 11)

where  stands for the jump of a quantity across the shock, 

the subscripts 1 and 2 refer to the two sides of the shock surface and  

denotes the components of the local unit normal to this surface pointing into 
region 2. It is now obvious that the jump across a shock produce sources of 
the types in Eqs. (6) and (8). They can be recognized as a monopole and a 
dipole distribution on the shock surface. All the derivatives, except in the last 
term on the right of Eq. (11) are ordinary derivatives now. Using the mass 
continuity and momentum equations, one can write the jumps in Lighthill 
stress tensor and its derivatives across the shock in terms of other flow param-
eters that are computed in CFD codes.

We discuss a subtle point about Lighthill’s jet noise theory when shocks are 
present in the flow. It can be shown that the derivatives of the inhomogeneous 
source term of Lighthill’s equation must be treated as generalized derivatives 
in this case, i.e., the source term is precisely  in Eq. (10) [5]. Equation (11) 

tells us that when there are shocks inside a jet, then . Note 

that the term  in Eq. (11) has ordinary derivatives. This term 

has a discontinuity across the shock and thus some of the algebraic manipula-
tions of this term under an integral are different from those associated with 
shock free jet noise theory. For example, the following two integrals are not 
equal because of this discontinuity:

(EQ 12)

Q
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(EQ 13)

It is clear that  is the contribution of  to  while  

is the full contribution of Q. This means that  is the solu-

tion of the jet noise equation when shocks are present in the flow. Further-
more, if we use Eq. (11) in the integrand of the last integral on the right side 
of Eq. (13), we will get  plus some surface integrals over the shock sur-

faces inside the jet. The subtlety we refer to here is that numerically this 
result is equal to that obtained from the expression on the right of the first 
equality sign in Eq. (13). But this expression happens to be the familiar solu-
tion that Lighthill gave for his shock free jet noise theory. 

Farassat and coworkers had proposed the rotating shock waves on rotor 
blades as the main source of high speed impulsive noise [24]. Some shock 
noise calculations based on Eq. (11) have shown this to be basically correct. 
It was found later using Formulation Q2 that the quadrupole sources near the 
leading edge of the blades is another important contributor to high speed 
rotor noise [20]. Currently the main obstacle in utilizing Eq. (11) for shock 
noise prediction is that one requires high resolution CFD data to get the 
source strengths. At present, CFD codes can not provide the jump in the gra-
dient of the Lighthill stress tensor across the shock accurately in reasonable 
computation time for noise prediction. One should note that CFD code devel-
opers for aerodynamic calculations are generally not interested in this param-
eter. They should be made aware of such a need in aeroacoustics.

Many interesting results await discovery by studying the quadrupole source 
term of FW-H equation in the setting of generalized function theory. In addi-
tion to shock sources, other sources from wake flapping, vortex motion and 
boundary layer can easily be identified [22, 23]. Unfortunately, because of 
the heavy investment in time required to learn the needed mathematical tools 
which include differential geometry and general tensor analysis, researchers 
have not been attracted to the study of these sources by this method. It is to be 
noted that intuitively, one may not recognize rotating shocks and flapping 
wakes as sources of sound. And if one does so, finding the source strengths 
from classical analysis is not an easy job because of substantial entanglement 
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in physical arguments and algebraic manipulations. The method proposed 
here is the natural approach because discontinuities are allowed in general-
ized functions and all the operations on ordinary functions are at our disposal 
with remarkable properties such as exchange of limit operations. 

So what is the answer to the question in the title of this Subsection? The qua-
drupole source in Eq. (5) is a volume source only if the solution is written in 
the form of Eq. (9) or its equivalents such as Formulations Q1A and Q2. The 
integrand in this equation can and usually is discontinuous due to shocks, 
wakes, etc. We can break down the quadrupole source term of Eq. (5) separat-
ing the contributions of the discontinuities which appear as surface terms 
involving jumps in Lighthill stress tensor and its gradient across the surface 
of discontinuity. So the source term is Eq. (5) can also be viewed as a combi-
nation of volume and surface sources the sum of whose contributions to the 
noise is the same as that from Eq. (9).    

3.3  The Surface Noise - Equations (6-8) 

We start by giving a solution of Eq. (6) that is both simple and basic for the 
wave equation with sources on a moving surface [12, 13, 25]:

(EQ 14)

where the parameter  is

(EQ 15)

Here,  is the local normal Mach number of the surface  and  is 

the angle between n and the radiation direction . The surface 

 defined earlier is called the influence surface of  or more com-

monly the . Its construction is shown in Figs. 1 and 2. More 
details can be found in [25]. The following relations derived by Farassat [26], 
can be used to write the above solution in two other forms:

4πp ′ x t,( ) 1
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(EQ 16)

where  is the element of surface area of the data surface ,  is the 

local Mach number in the radiation direction of the data surface and  is the 
element of length of the curve of intersection of the collapsing sphere and the 
the data surface (See Fig. 1).

3.3.1  The Subsonic Case

The solution of Eq. (7) for a data surface that moves subsonically is based on 
Eqs. (15) and (16). It is

(EQ 17)

To bring in the time derivative, we use the following relation

(EQ 18)

where  is the expression inside the square brackets in the integrand of 
Eq. (17). We will not carry out this step.

The solution of Eq. (8) is also based on Eqs.(15) and (16) and is: 

(EQ 19)

To bring the space derivative in, we prefer to convert it first to time derivative 
and then use Eq. (18). This conversion was given by Farassat [26, 27] based 
on an identity relating the space and time derivatives of the Green’s function 
of the Wave equation. The result is:
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(EQ 20)

where we have defined . When  and , 

Eqs. (17) and (20) give the thickness and loading noise terms of Formulation 
1 of Farassat, respectively [26-28]. The data surface  is taken as the 
blade surface itself. After taking the time derivative inside the integrals by 
using Eq. (18), we get the thickness and loading noise terms of Formulation 
1A of Farassat [28, 29]. This formulation has been coded in NASA helicopter 
noise prediction code WOPWOP [29] which is extensively used by the U.S. 
helicopter industry. This code is highly robust and efficient on a desktop 
workstation. Some versions of the code also have the capability of predicting 
the subsonic and supersonic quadrupole noise. There are many publications 
by NASA and industry researchers and engineers reporting on the application 
of this code to helicopter rotor noise prediction and comparison with experi-
mental data.

3.3.2  The Supersonic Case 

For supersonically moving surfaces it is difficult to get a singularity free solu-
tion of the FW-H equation which can be used in the development of an effi-
cient and robust code. In general, the formulations are very complicated and 
their derivation requires many algebraic manipulations [30, 31]. In noise pre-
diction codes, the data surface is divided into panels and the contribution of 
each panel to the noise is evaluated separately and summed. Naturally, for 
panels moving at subsonic speed, we want to use the simple subsonic formu-
lations such as 1A discussed above. It can be shown that no additional terms 
appear in this formulation, e.g., edge terms, when we use it for a panel. For 
supersonic formulations, in general, one has edge line integrals in the solu-
tion of the wave equation for a panel. Therefore, we should explicitly write 
the surface source terms of FW-H or K equations for a panel as follows. Let 

 be defined such that  describes the edge of the panel 
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and , where  is the unit inward geodesic normal at the edge. This 

latter condition implies that  on the panel. The geodesic normal is a vec-
tor that is tangent to the panel and simultaneously perpendicular to the edge 

curve. Let  denote the Heaviside function. We are interested in solving 
the following three wave equations when the panel described by 

 moves at arbitrary supersonic speed:

(EQ 21)

(EQ 22)

(EQ 23)

The solution of Eq. (21) is just slightly different from that of Eq. (6):

(EQ 24)

where . The solutions of Eqs. (22) and (23) are 

more complicated. We take the following step to reduce algebraic manipula-
tion [12, 13]. Any function multiplying the Dirac delta function can be 
restricted to the support of the delta function. For example, it is well-known 
that . Using a tilde under a symbol to denote restric-
tion of a function to the panel surface and the rules of differentiation in gener-
alized function theory[6-8, 12, 13], we get
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(EQ 25)

(EQ 26)

Here, we have the following symbols: ,  is the 

local Mach number in the direction of the geodesic normal,  is the com-

ponent of  tangent to the panel,  is the surface divergence of , 

 is the component of  normal to the panel and  is the local mean 

curvature of the panel surface. Strictly speaking, we do not need the restric-
tion sign over many of the symbols. However, the sign is necessary on 

, and on the symbols multiplying  as shown. Note that  

multiplying  in Eq. (25), and  in both of the above equations multi-

plying  are not restricted to the surface of the panel [32]. Therefore, we 

can not set  in these terms. 

We can always set  for any function  which is restricted to 

the surface . This property helps in the reduction of algebraic manipu-
lations which are extensive in the derivation of a supersonic formulation. The 
time derivative of the restricted function is given by the relation 

 which is what an observer sitting on the data 

surface measures as the rate of change of q with time. In this relation  is 

the local normal velocity of the data surface. To illustrate the nature of the 
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simplification introduced by restriction of a function multiplying Dirac delta 
function to the support of the delta function, we give the following example. 
Taking the derivatives with respect to x of both sides of the equation 

, we get . This 
relation means that the functional values of the generalized functions on each 
side of the equality sign are the same for any test function. Obviously the 
generalized function on the right side of this relation is simpler than that on 
the left side. In the multi-dimensional case of our problem, the simplification 
in algebraic manipulations is substantial because the number of expressions 
involved in the derivation is reduced.   

The first source terms of Eqs. (25) and (26) is of the type in Eq. (21). We need 
to give the solution to two new wave equations with sources of the types 
below:

(EQ 27)

(EQ 28)

The solution of Eq. (27) is given in [12] as follows:

(EQ 29)

where  which can be written in terms of the geometric and 

kinematic parameters of the panel[12], and dL is the element of the length of 
the edge of the  generated by the panel surface.

The solution of Eq.(28) is much harder to obtain. After using the Green’s 
function of the wave equation and integrating with respect to the source time, 
we get

(EQ 30)

We next use the following identity [12, Eq. (4.39), 32] to interpret the above 
integral:
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(EQ 31)

where  is an arbitrary surface here which is replaced by  when this iden-

tity is applied to Eq. (30). Here  denotes the local mean curvature of the 

surface . For the  of the panel, let  be the 

local unit normal and  be the local normal curvature. It can be shown eas-

ily that . Equation (30) can then be written as:

 (EQ 32)

Our task in finding a solution of Eq. (28) is not finished. The first term in the 
integrand gives a line integral because we have

(EQ 33)

The interpretation of the resulting integral is [12]:

(EQ 34)

where  is the angle between  and . See references [12, 13] for fur-
ther details of the above mathematical steps.

We have, thus, given the full solution of the FW-H and the K equations for 
sources on a panel moving at any speed but, in particular at supersonic speed. 
We believe that this result is suitable for development of an efficient com-
puter code so long as we limit the use to supersonic panels [31]. For the 
thickness and loading terms of the FW-H equation, the resulting analytic 
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expression after taking all the derivatives explicitly, is a very complicated 
result known as the Formulation 3 of Farassat [30, 31]. Formulation 3 has 
been coded in the high speed propeller noise prediction code ASSPIN [33] by 
Mark H. Dunn. The derivation here is different from and more advanced than 
the original derivation in the early Eighties. Farassat and Farris [25] have 
recently published the full derivation of the mean curvature of the 

 which was originally derived and published in 1996 by the first 
author [13].

In propfan noise prediction, the line integral in Formulation 3 can produce a 
logarithmic singularity in the acoustic field when the leading and trailing 
edges are not sufficiently swept and the propeller is operated at high super-
sonic tip speed. This singularity was studied by E. De Bernardis in a Ph.D. 
dissertation of University of Rome (La Sapienza) and reported later in [34]. 
Farassat and Myers [35] have shown that the singularity is removed if we add 
the contribution of the quadrupoles of the FW-H equation to the line integral. 
Thus, the singularity of the line integral in Formulation 3 is because the phys-
ics of the problem is not accounted fully in the differential equation when we 
retain only the thickness and loading source terms of the FW-H equation.

We have continued to work on the supersonic source problem. A more recent 
paper from a totally different direction is reported by Farassat, Brentner and 
Dunn [36]. One interesting result of this work is that the analytic expression 
for the acoustic pressure obtained, called Formulation 4, is closely related to 
those of geometrical acoustics and optics. Another interesting and important 
result is the formation of caustics in the radiation field, in particular in the 
near field, of rotating blades at all tip speed range. In fact, it appears that for 
further progress, we should apply other areas of advanced mathematics such 
as the singularity theory [37] as utilized, for example, in optics [38]. Some 
interesting work along this line is by Ardavan [39, 40]. 

In this paper, we have emphasized the work of the author and coworkers at 
NASA Langley Research Center. The readers are encouraged to study the 
publications of the following researchers who have contributed to time 
domain analysis and its applications in rotating blade noise prediction: M. K. 
Myers, Kenneth S. Brentner, T. F. Brooks and C. L. Burley (blade-vortex 
interaction noise, tilt rotor noise), D. L. Hawkings and M. V. Lowson, H. 
Ardavan, H. Tadghighi, Lyle N. Long, A. R. George (rotor noise), A. S. 
Lyrinzis (application of Kirchhoff formulas to rotor noise problems, particu-

Σ surface–
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larly the review article [41]), Michael Carley (propeller noise), Martin Kuntz 
(rotor noise), Judith M. Gallman (application of Formulation 1 to rotor 
noise), S. Ianniello (rotor noise, particularly the papers on the construction of 
the ), Luigi Morino (BEM in aerodynamics and aeroacoustics), 
P. Di Francescantonio (rotor noise) and Enrico De Bernardis, V. Wells and A. 
Han (rotor noise).         

4.0  Concluding Remarks

We have reviewed the advances in the application of the Kirchhoff method in 
discrete frequency noise prediction. Much progress has been made in the past 
thirty years. It can be said that for aeroacoustic applications one can depend 
exclusively on the FW-H equation with a penetrable data surface enclosing 
the most significant part of the quadrupole sources. It has been shown that the 
data surface can even be in the nonlinear region where the use of the Kirch-
hoff formula for a moving surface, a solution of the K equation, would give 
large errors [17]. The state of noise prediction for subsonic sources is highly 
satisfactory. We have a solution of the FW-H equation that has given us an 
efficient and robust code. When part or all of the data surface  moves 
at supersonic speed, both the structure of the acoustic field and the mathemat-
ics become much more complicated. Part of the mathematical problem is due 
to the appearance of singularities in the analytic results which are not real. 
There is also cancellation of singularities among various integrals. Much 
progress has been made in the supersonic case. We have learned a lot but 
there is more to explore about this problem in the future. It was my encounter 
with Phil Doak in 1973 that set the direction of my research in time domain 
analysis. His farsighted remark about ignoring “the force of tradition” made 
the time domain calculations routine these days for helicopter rotor and pro-
peller noise prediction. Happy eightieth birthday Phil!
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Captions for Figures

Figure 1. The collapsing sphere intersecting a rotating blade at the source
time . Note that the collapsing sphere is the intersection of the characteristic

cone (conoid) of (x, t) with the three dimensional space at the time .

Figure 2. The construction of the  for a flat rectangular rotor

blade. The rotor is moving forward at the velocity  in such a way that all

points on the rotor travel at subsonic speed relative to the speed of sound in
undisturbed medium. The  will be more complicated and even in
several pieces if part or all the blade surface travel at supersonic speed
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